Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Boja\'; Merelli, E.; Woodruff, D. P. (Ed.)
-
Tile self-assembly is a well-studied theoretical model of geometric computation based on nanoscale DNA-based molecular systems. Here, we study the two-handed tile self-assembly model or 2HAM at general temperatures, in contrast with prior study limited to small constant temperatures, leading to surprising results. We obtain constructions at larger (i.e., hotter) temperatures that disprove prior conjectures and break well-known bounds for low-temperature systems via new methods of temperature-encoded information. In particular, for all n∈N , we assemble n×n squares using O(2log∗n) tile types, thus breaking the well-known information theoretic lower bound of Rothemund and Winfree. Using this construction, we then show how to use the temperature to encode general shapes and construct them at scale with O(2log∗K) tiles, where K denotes the Kolmogorov complexity of the target shape. Following, we refute a long-held conjecture by showing how to use temperature to construct n×O(1) rectangles using only O(logn/loglogn) tile types. We also give two small systems to generate nanorulers of varying length based solely on varying the system temperature. These results constitute the first real demonstration of the power of high temperature systems for tile assembly in the 2HAM. This leads to several directions for future explorations which we discuss in the conclusion.more » « less
-
Self-assembly is the process by which a system of particles randomly agitate and combine, through local interactions, to form larger complex structures. In this work, we fuse a particular well-studied generalization of tile assembly (the 2-Handed or Hierarchical Tile Assembly Model) with concepts from cellular automata such as states and state transitions characterized by neighboring states. This allows for a simplification of the concepts from active self-assembly, and gives us machinery to relate the disparate existing models. We show that this model, coined Tile Automata, is invariant with respect to freezing and non-freezing transition rules via a simulation theorem showing that any non-freezing tile automata system can be simulated by a freezing one. Freezing tile automata systems restrict state transitions such that each tile may visit a state only once, i.e., a tile may undergo only a finite number of transitions. We conjecture that this result can be used to show that the Signal-passing Tile Assembly Model is also invariant to this constraint via a series of simulation results between that model and the Tile Automata model. Further, we conjecture that this model can be used to consolidate the several oft-studied models of self-assembly wherein assemblies may break apart, such as the Signal-passing Tile Assembly Model, the negative-glue 2-Handed Tile Assembly Model, and the Size-Dependent Tile Assembly Model. Lastly, the Tile Automata model may prove useful in combining results in cellular automata with self-assembly.more » « less
An official website of the United States government

Full Text Available